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Abstract

Being able to learn from small amounts of data is a key char-
acteristic of human intelligence, but exactly how small? In this
paper, we introduce a novel experimental paradigm that allows
us to examine classification in an extremely data-scarce set-
ting, asking whether humans can learn more categories than
they have exemplars (i.e., can humans do “less-than-one shot”
learning?). An experiment conducted using this paradigm re-
veals that people are capable of learning in such settings, and
provides several insights into underlying mechanisms. First,
people can accurately infer and represent high-dimensional
feature spaces from very little data. Second, having inferred
the relevant spaces, people use a form of prototype-based cate-
gorization (as opposed to exemplar-based) to make categorical
inferences. Finally, systematic, machine-learnable patterns in
responses indicate that people may have efficient inductive bi-
ases for dealing with this class of data-scarce problems.

Keywords: Categorization, few-shot learning; soft labels;
machine-learning

Introduction

Machine learning (ML) systems now approach or exceed
human performance across a wide variety of tasks (LeCun,
Bengio, & Hinton, 2015). Much of this progress is at-
tributable to the use of highly flexible algorithms in very
data-rich settings—most benchmark tasks in classification,
for instance, provide hundreds or thousands of examples per
class (e.g. Krizhevsky, Sutskever, & Hinton, 2012). In con-
trast, human intelligence is characterized by its impressive
data efficiency. Both children and adults can effectively learn
complex concepts in few- or “one-shot” settings (i.e., after
seeing a few or one examples; see below for a detailed re-
view). This contrast in the efficiency of learning has inspired
recent ML research in few-shot learning (for a review, see
Y. Wang, Yao, Kwok, & Ni, 2020). A recent finding sug-
gests that it is technically possible to learn in less-than-one-
shot (LO-shot) settings (e.g., learning N classes from M < N
samples, see Sucholutsky & Schonlau, 2020). It is currently
unknown whether humans can learn in such a setting. More-
over, no existing experimental paradigms are fit to investigate
this question, as LO-shot learning requires using “soft labels”
(which provide graded category membership) as opposed to
the “hard” discrete assignments that are typically used.

In this paper, we introduce a novel experimental paradigm
that allows us to test LO-shot learning in humans, and present
the results of an experiment conducted in this paradigm.
These results are both the first demonstration of success-

ful LO-shot learning in humans, and provide the follow-
ing novel insights into the psychological mechanisms en-
abling this capacity. First, the distribution of participants’
responses indicates that they accurately infer the structure
and statistics of the data-generating process, without any ex-
plicit instruction. Second, comparing participant data with
the predictions of computational models suggests that people
use a form of prototype-based categorization (as opposed to
exemplar-based). Third, participant responses show system-
atic, machine-learnable patterns, which suggests that people
may have efficient inductive biases for dealing with this class
of data-scarce problems. Combined, these results demon-
strate the power of our paradigm to reveal novel insights into
cognition and shed light on existing debates in psychology.

Few-Shot Learning in Humans

A fundamental question in cognitive science is how peo-
ple come to know so much about the world from such lit-
tle input (Russell, 1948). There is much evidence to sug-
gest that people can learn from few examples: toddlers learn
and generalize the functions of artifacts (Casler & Kelemen,
2005) and meanings of words (Carey & Bartlett, 1978; Carey,
2010; Bloom, 2000) after exposure to just one instance,
whereas adults can learn novel recursive (Lake & Piantadosi,
2020), compositional (Lake, Linzen, & Baroni, 2019), lexi-
cal (Coutanche & Thompson-Schill, 2014), and visual (Lake,
Salakhutdinov, Gross, & Tenenbaum, 2011) concepts in sim-
ilar settings. But what underlies such impressive efficiency?

Early theorists proposed that human knowledge is too com-
plex to be learned from limited input, and thus must be in-
nate (e.g., Chomsky, 1986). But mounting evidence sug-
gests that statistical inference can be sufficient (Xu & Kush-
nir, 2013; Tenenbaum, Kemp, Griffiths, & Goodman, 2011)
when supported by inductive biases resulting from hierarchi-
cal inference (Yuan, Xiang, Crandall, & Smith, 2020), ac-
tive allocation of attention (Smith, Jones, Landau, Gershkoff-
Stowe, & Samuelson, 2002), and well-calibrated priors (Rule
& Riesenhuber, 2021). LO-shot learning is a problem that
contributes to this debate by highlighting the surprising com-
plexity of statistical inferences that can be drawn from rich
and scarce data. It might seem impossible to learn a category
without seeing any examples from it—yet such inferences are
quite common.



Computational Principles of LO-shot Learning

In the machine-learning literature, few-shot learning meth-
ods can be seen as a response to the growing problem of
deep learning requiring massive models to be trained on mas-
sive datasets. This scaling trend has led to novel deep learn-
ing technologies being inaccessible to the broader research
community due to the data requirements and computational
cost, as well as potentially being harmful to the environ-
ment due to their energy cost (Strubell, Ganesh, & McCal-
lum, 2019). While few-shot learning can greatly reduce the
required number of training examples over typical deep learn-
ing techniques, this number still scales at least linearly with
the number of classes present in the dataset. For example,
one-shot learning still requires one training example for ev-
ery class in the dataset (Fei-Fei, Fergus, & Perona, 2006).
LO-shot learning emerged as an attempt to probe the lim-
its of few-shot learning and determine whether it was pos-
sible to have sub-linear scaling of the required number of
training examples. The first evidence of LO-shot learning in
neural networks came about as a by-product of research into
“dataset distillation”—a method for “distilling” large training
datasets into small synthetic datasets that will still train mod-
els to comparable test accuracies (T. Wang, Zhu, Torralba,
& Efros, 2018). Sucholutsky and Schonlau (2021) showed
that the size of the synthetic “distilled” dataset could be re-
duced to below one training example per class if each syn-
thetic training example were assigned a learnable soft label
instead of the usual hard labels (see Figure 1 for an expla-
nation of hard and soft labels). They demonstrated this by
showing a neural network can accurately recognize handwrit-
ten images of the ten digits (0-9) after being trained on a total
of just five synthetic images. Further research into LO-shot
learning focused on using analytical methods to test the theo-
retical limits of learning with small data and showed that the
number of soft-labeled training examples required to learn K
classes was actually a function of the geometry of the data
rather than of K (Sucholutsky & Schonlau, 2020). A key re-
sult from this analysis was that just two soft-label training

0.6 Set largest to 1 1
0.3 et largest to 0
0.1 and rest to 0 0

Figure 1: Soft and hard labels. The vector on the left shows
a soft label—a probability distribution over a stimuli’s mem-
bership to each class. In this example, the soft label sug-
gests 60%, 30%, and 10% probability of membership to the
first, second, and third classes, respectively. The vector on the
right shows a hard label, which indicates a stimulus belongs
to a single class. In this example, the hard label suggests strict
membership in the first class. Hard labels can be derived from
soft labels by using an argmax function (i.e. setting the high-
est probability element to 1, and the rest to 0).
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Figure 2: Generated stick figures along a 1-D manifold.

examples are sufficient to characterize any finite number of
classes, if those classes are all approximately situated on the
same one-dimensional manifold. Sucholutsky, Kim, Browne,
and Schonlau (2021) propose algorithmic methods for detect-
ing and exploiting such manifolds in datasets.

In this paper, we propose a framework for testing whether
humans also have strategies for disentangling class informa-
tion in small data regimes. In particular, in this initial study
we test the simplest formulation of the result above: can hu-
mans learn to characterize three classes lying on a 1-D mani-
fold when given just two soft-label training examples?

Methods
Participants

Participants were 70 adults (25 male, 43 female, 2 non-binary,
mean age = 36) recruited from the Prolific platform in ex-
change for monetary compensation ($2.00 for a 15-minute
experiment). Participants were to be excluded if they gave
the same response for each trial throughout the experiment,
which could possibly indicate lapsed attention. However, no
participants were eliminated from the original sample as none
of them met this pre-determined exclusion criterion.

Stimuli

Testing LO-Shot learning in humans can be difficult, because
it requires eliciting people’s notions of a category that they
have never seen before. Our paradigm proposes that we can
glean this information by asking participants to classify a
stimulus into one of many unseen categories.

The stimuli for this experiment were adapted from
Sanborn and Griffiths (2008). These stick-figure models of
quadrupeds have 9 distinct, continuous features, so they are
characterized by a nine-dimensional space. The stimuli were
generated by manually instantiating feature values for two
stick figures, then taking linear combinations of these val-
ues to produce more stick figures with new feature values.
Because we only took linear combinations of the feature val-
ues, which were scaled by their respective possible ranges,
the stimuli all lie on a 1-D manifold in a 9-D feature space.

We also repeated the stimulus generation procedure, so that
we could determine if results were robust across two different
manifolds (Manifold 1 and Manifold 2). Each manifold con-
tains 20 generated stimuli. To see a subset of generated stick
figures and examples of how the features can change across
the manifold, see Figure 2.



Table 1: Soft Label Pairs (SLPs)

Dinosaur 1 Dinosaur 2
1 [0%, 0%, 100%] [25%, 50%, 25%)]
2 [0%, 0%, 100%] [25%, 75%, 0%]
4 [0%, 25%, 75%] [25%, 0%, 75%]
5 [0%, 25%, T5%] [25%, 25%, 50%)]
6 [0%, 25%, 715%] [25%, 50%, 25%)]
7 [0%, 25%, T5%] [25%, 75%, 0%]
8 [0%, 25%, T5%] [50%, 0%, 50%]
9 [0%, 25%, 75%]  [50%, 25%, 25%)]
10 [0%, 25%, 75%] [50%, 50%, 0%]
11 [0%, 25%, 75%] [75%, 25%, 0%]
12 [0%, 50%, 50%] [25%, 25%, 50%]
13 [0%, 50%, 50%] [50%, 0%, 50%]
14 [0%, 50%, 50%] [50%, 25%, 25%]
16 [25%, 25%, 50%] [25%, 50%, 25%]

To make the these stimuli intuitive to understand, we
framed the stick figures as models that paleontologists use to
summarize dinosaur fossil structure. Therefore, we referred
to the stick figures as dinosaurs throughout the experiment.

The task we built took inspiration from LO-shot learning
methods in ML by adapting the concept of soft labels, which
are a way to represent an object’s simultaneous membership
to several classes to a human setting (see Figure 1 for an ex-
planation of soft labels). In order to make this concept intu-
itive to participants, we gave them soft labels in the form of
genetic information. Specifically, we indicated that dinosaurs
had a certain amount of genetic overlap with three unseen
species: Species 1, Species 2, and Species 3. If subjects build
characterizations for Species 1, 2, and 3 when given only two
soft-labelled dinosaurs, we can successfully probe whether
humans are capable of LO-shot learning in this paradigm.

We built soft-label data in the form of soft-label pairs
(SLPs) because we planned to show two dinosaurs, each with
their own genetic information pertaining to Species 1, 2, and
3. SLPs were chosen according to the following criteria: a)
they should use probabilities that are easily interpretable in
the context of genetic background (i.e. 0, 0.25, 0.5, 0.75,
1); b) they should be informative about all three classes; c)
they should form valid probability distributions; and d) they
should capture a diverse set of possible configurations.The fi-
nal set of SLPs used in this study are listed in Table 1.

Experimental Procedure

Participants were randomly assigned into one of 14 condi-
tions. Each group was introduced to a different set of soft la-
bels which were assigned to Dinosaurs 1 and 2 for the whole
experiment. All 14 SLPs are listed in Table 1.

To introduce the experiment, we presented participants
with a vignette, framing the stick-figure stimuli as models that
paleontologists use to compare the anatomy of dinosaur fos-
sils they have uncovered at dig sites. The soft labels were

Scientists did a DNA analysis of two dinosaur fossils and found that they were
descendants of unseen dinosaur species, labeled A, B, and C.
In the following trials, carefully ine the three dii s and the
genetic information before making a decision.

Dinosaur 1 Dinosaur 2

Dinosaur Percent
Species  Related

Dinosaur Percent
Species  Related

A 25% A 25%

B 25% B 50%
C 50% C 25%

Dinosaur 3

Which species is this dinosaur most closely related to?

A B C

Figure 3: A screen capture from the experiment. In this trial,
participants classified a dinosaur from Manifold 1, with ge-
netic information from SLP 16.

explained as results of a long and expensive DNA analy-
sis which revealed that these labeled dinosaurs are the de-
scendants of three previously unknown species of dinosaur.
Therefore, we can offer a rationale for the classification
task: “the scientists believe that by comparing the stick-figure
model of a new fossil against those of the first two fossils
and their genetic information, it may be possible to deduce
the closest relative of the new fossil.” The participants were
then presented with two of the dinosaur fossil models (la-
beled Dinosaur 1 and Dinosaur 2) and genetic information
for each. They then saw a third dinosaur (Dinosaur 3) and
were asked to use the appearance of all of the dinosaurs and
the genetic information from Dinosaurs 1 and 2 to conclude
which species Dinosaur 3 is most closely related to.

After the participant submitted their response, the trial was
repeated, but Dinosaur 3 was a new, unseen stick figure from
the manifold. Thus, participants completed 20 trials per man-
ifold. Because we generated two manifolds, mid-way through
the experiment participants were alerted that they would be
changing to new dig sites with new dinosaurs. They pro-
ceeded to repeat the same process but with dinosaurs gen-
erated from the second manifold. The order of Manifolds 1
and 2 was randomized for each participant. Note that while
Dinosaurs 1 and 2 change across the manifolds, the genetic
information presented remains the same for each participant.
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Figure 4: Distributions of participant responses for every SLP. Each color represents one of the possible three classification
responses. The grey columns represent the locations along the manifold of Dinosaur 1 and Dinosaur 2 shown to participants.
Along the grey columns, colored markers represent the genetic information associated with the dinosaur at that location.

Results

Our analysis of our data had three aims. First, to deter-
mine that a) participants are actually performing some sort
of meaningful learning from the soft labels in our experiment
and that b) strategies are robust across different participants.
Second, to explore which approach to classification partici-
pants may be using when developing their strategies in this
experiment. Finally, to show that machine-learning models
can predict human behavior in this experiment.

Learning from Soft Labels in LO-Shot Settings

One of the benefits of our proposed framework is that it en-
ables evaluation of the human ability to disentangle class in-
formation in LO-shot regimes. We performed several analy-
ses which suggest that participants are discovering meaning-
ful, reproducible strategies in this setting.

First, we can qualitatively observe in the population dis-
tributions in Figure 4 that participants have non-trivial pos-
teriors over all three classes over the entire manifold and
that these posteriors vary with changes in the presented SLP.
When analyzed at a subject-level, we find that the conclusion
is the same: individual participants have non-trivial posteri-
ors over all three classes that vary with position of the tar-
get dinosaur along the manifold. Furthermore, we tested the
variance within every SLP (i.e. a 20-by-3 contingency ta-
ble) using Pearson’s chi-squared test and find that, even after

applying the Bonferroni correction for multiple comparisons,
the results are statistically significant for all (x2(38) > 90,
p < .001) but two SLPs (SLP-4: x2(38) = 41.7, p = 0.312;
SLP-5: %%(38) = 47.0, p = 0.149). We also test the effect
of choice of SLP (i.e. a 14-by-3 table as we aggregate over
the manifold for each SLP) and find that the results are also
statistically significant (x?(26) = 721.9, p < .001).

As mentioned above, each participant completed 40 trials
on their assigned SLP, 20 of which are with Manifold 1 and
20 with Manifold 2. Since the soft labels remain constant be-
tween these two sets of 20 trials (only the presented pair of di-
nosaurs changes), we can compute within-subject agreement
(WSA) by comparing a participant’s responses on the Man-
ifold 1 to their responses on Manifold 2. Similarly, we can
calculate between-subject agreement (BSA) by comparing re-
sponses of all pairs of participants assigned to the same SLP.
Across our dataset, we find that WSA is fairly high with an
average of 74.07% while a random selection strategy has an
expected WSA of 33.33% (binomial test, p < .001). This sug-
gests that participants develop a consistent strategy and that
the induced posterior is based on a relative comparison of the
stimuli (i.e. the manifold described by the SLP) rather than
the absolute stimuli. We find that BSA is 68.18% (chance
value is still 33.33%; binomial test, p < 0.00001) which sug-
gests that different participants may be discovering the same



strategies for disentangling classes.

In order to further test whether participants’ strategies
make use of the soft-label information, we compare whether
the BSA between pairs of participants is correlated with
the similarity between the two SLPs those participants were
shown. To compute similarity between pairs of SLPs, we flat-
ten each SLP into a single vector of length six (three proba-
bility values from each of the two soft labels in an SLP) and
compute cosine similarity (dot product divided by the product
of the norms) between every pair of such vectors.

In Figure 5, we present a heatmap of pairwise BSA across
all participants alongside a heatmap of cubed pairwise cosine
similarities of the SLPs presented to each participant (cubing
the similarities helps better distinguish the structure). The
Pearson correlation coefficient between the upper-triangular
entries of the two matrices is r(2483) = 0.566, p < 0.001
which suggests moderate linear correlation. Based on the
well-defined structures visible in the BSA heatmap, we con-
clude that subjects’ strategies make significant use of the pro-
vided soft labels but that a similarity metric other than cosine
similarity may be more predictive of BSA.

Prototype and Exemplar Models

A comprehensive overview of psychological models of cat-
egorization is outside the scope of this paper (instead, see
Murphy, 2002; Kruschke, 2008). However, we will intro-
duce the two main classes of models that have been used in
the literature and analyze which better matches human be-
havior in LO-shot settings. Exemplar models (e.g., Medin &
Schaffer, 1978; Nosofsky, 1987) typically store each instance
of a category that has been encountered thus far, and catego-
rize new stimuli according to the similarity of the stimulus
to every exemplar in memory. Prototype models (e.g., Reed,
1972) operate analogously, but derive summary representa-
tions of learned categories and compute similarity with these
“prototypes” (instead of computing it across all instances).
There are few restrictions on what constitutes a summary
representation—it could be the modal exemplar for a cate-

Participant Index 10
0 10 20 30 40 50 &0

Participant Index 10

0 10 20 30 40 50 &
0
0.8
0.6
04
0.2

0.0

=)
=
@

]
SLP Cosine Similarity

Participant Index
B 8 & 4
Participant Index
5 58 &5 8

o =

= S

Between-Subject Agreement

=
)

Figure 5: Comparing the similarity matrix of participant re-
sponses to the similarity matrix of the SLPs they were shown.
The left shows a heatmap of pairwise between-subject agree-
ment (i.e. the similarity between participant responses). The
right shows a heatmap of cosine similarity between the actual
SLPs assigned to these participants.

Human Prototype 1NN Exemplar 2NN Exemplar

SLP-1
e o P £ &
g ¥ 8 & 8

SLP-4
o
=

%
/
\

000 | AANNKA

SLP-14
o
=

SLP-13
e o o @
g ¥ 28 &

Figure 6: Comparing classification strategies to population
results for four SLPs. The first column shows the distribution
in our population of human participants. The remaining three
columns show model distributions.

gory, the central exemplar, or an “ideal” (see Murphy, 2002).
We compare our study population results against three
parameter-free classification models: a) a prototype model
that first fits three hard-label prototypes (one for each class)
to the data and then uses them with a distance-weighted
3-nearest neighbor classifier for prediction; b) a 1-nearest
neighbor (1NN) exemplar model that copies the nearest la-
beled dinosaur when predicting probabilities at a target point;
and c) a distance-weighted 2-nearest neighbor (2NN) exem-
plar model. When making a prediction, the distance-weighted
k-nearest neighbor models that we used output the sum of
the k provided labels (hard or soft) weighted by their inverse
square distance from the target point. We compare the prob-
ability distributions predicted by all three models against the
empirical distribution collected from the population for all of
the SLPs and find that the prototype model best matches the
empirical distribution. The average of the mean squared er-
rors (MSE) are 1.400 (variance-weighted multi-output R?2 =
0.609) for the prototype model, 2.584 (variance-weighted
multi-output R?> = 0.284) for the INN exemplar model, and
2.639 (variance-weighted multi-output R?> = 0.299) for the
2NN exemplar model. In Figure 6 we visualize the empirical
distribution and the three model distributions for four SLPs.

Machine Learning

The human responses collected in this dataset can be used for
supervised training of machine-learning models. The moti-
vation for doing this is three-fold: a) the results can provide
evidence for or against human ability to learn in the LO-shot
setting; b) a successfully trained model could be used to simu-



late or predict human behavior which in turn can guide future
data collection; and c) it enables a new human-in-the-loop
method for training and aligning machine learning systems in
extreme low-data regimes without having to explicitly encode
strong inductive biases into the models.

We establish a proof-of-concept benchmark by fitting a
Random Forest classification model to our dataset. The input
features to the model consist of a flattened vector describing
a single trial: two coordinates corresponding to the location
of the two labeled dinosaurs along the one-dimensional man-
ifold, the associated six soft-label values corresponding to the
SLP, and the coordinate corresponding to the location of the
third (target) dinosaur. The target output consists of the clas-
sification the participant made for that third dinosaur during
the trial. We use the RandomForestClassifier implemen-
tation from the scikit-learn Python package (Buitinck et
al., 2013) with n_estimators=20 and max_features=None.

To avoid over-fitting, we perform leave-one-out cross-
validation (LOO-CV) over SLPs which ensures that no par-
ticipants, nor any SLPs, overlap between training and valida-
tion. The population-level classification accuracy averaged
over the 14 folds was 88.9%. The average MSE between
the model-estimated probability distribution and the empir-
ical distribution was 0.086 (variance-weighted multi-output
R? = 0.443). We note that R? is lower than for the prototype
model due to one fold (SLP-4) where the mean values are
highly predictive for all classes leading to a large negative R?
value for the random forest model (excluding this fold, aver-
age R?> = 0.627). These results suggest that machine learn-
ing models can indeed successfully predict human behavior
in LO-shot settings which reinforces the conclusion that hu-
mans act systematically in this low-data regime. We provide
an example of human and model predictions in Figure 7.

Promising next steps include expanding the input feature
set (e.g. using the stick-figure features or even raw pixels),
training other model types (e.g. neural networks), and using
trained models to simulate a large dataset over a wide range of
the unexplored feature space to guide further data collection.

Discussion

In this paper, we introduced a novel paradigm for investigat-
ing LO-shot learning and soft-label classification in humans.
Experimental results from this paradigm show that people can
learn categories for which they have not seen any exemplars.
That is, people’s capacity for learning in low-data regimes
approaches the theoretical limits of sample efficiency. But
which mechanisms enable such efficient learning?

Systematic response patterns (e.g., high between-subject
agreement on trials with markedly different superficial fea-
tures) indicate that participants accurately infer and represent
the feature space underlying our generative model. Our mod-
eling suggests that people then form prototypes in this space,
and base their final classification judgments on these proto-
types, while constraining their inferences through machine-
learnable inductive biases.
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Figure 7: Comparing human behavior with model estimates
for each target dinosaur in SLP-13. The model was a random
forest classifier trained on human responses from the remain-
ing 13 SLPs. The top row shows the human (majority vote)
and model predictions for class membership. The bottom row
shows the corresponding probability distributions.

Though the experiment presented in this paper intention-
ally used visual stimuli that participants would have little
prior knowledge about, our paradigm can conceptually be
used to investigate LO-shot learning in other modalities (e.g.,
classifying auditory stimuli) or domains (e.g., causal learn-
ing). Similarly, the category structure underlying our exper-
iment was chosen to be interpretable, but our paradigm en-
ables investigating behavior at higher dimensions and cate-
gorical complexity.

How common are LO-shot learning problems in everyday
life? The novel exemplar case analyzed in this paper is likely
to occur more frequently in developmental settings: a child
might learn that a unicorn is mostly like a horse but also
a bit like a rhinoceros, for instance, learning about a novel
category without seeing any unicorns in the wild. Adults
frequently perform similar inferences as well. If you have
never heard of Queen’s music before, for instance, your friend
might tell you: “it’s a lot like Led Zeppelin and a bit like
ABBA too.” The computational principles outlined in this pa-
per could explain how you can guess what Bohemian Rhap-
sody might be like without even hearing it.

More generally, the development of finer-grained concep-
tual structure may leverage the higher information density
provided by soft labels, accessing the full potential of hierar-
chical inference, especially in domains with fuzzier category
boundaries. Future work could investigate whether the mod-
els developed in this paper can be generalized to inferences
in these domains as well.
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